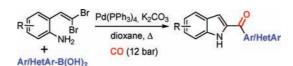
ORGANIC LETTERS

2009 Vol. 11, No. 20 4608-4611

Palladium-Catalyzed Domino C,N-Coupling/Carbonylation/Suzuki Coupling Reaction: An Efficient Synthesis of 2-Aroyl-/Heteroaroylindoles


Martin Arthuis, Renée Pontikis,* and Jean-Claude Florent*

Institut Curie, Centre de Recherche, 26 rue d'Ulm, Paris F-75248 cedex 05, France, and CNRS, UMR 176, 26 rue d'Ulm, Paris F-75248 cedex 05, France

renee.pontikis@curie.fr; jean-claude.florent@curie.fr

Received August 12, 2009

ABSTRACT

A convenient one-pot synthesis of 2-aroylindoles using a domino palladium-catalyzed C,N-coupling/carbonylation/C,C-coupling sequence is described. The reaction involved easily prepared 2-gem-dibromovinylanilines and boronic acids under carbon monoxide. Optimized reaction conditions allowed the construction of a wide variety of highly functionalized 2-aroyl-/heteroaroylindoles in satisfactory yields.

The indole scaffold is prevalent in a plethora of natural and synthetic compounds characterized by a variety of biological and pharmacological activities.¹ In particular, the 2-aroylindole moiety is presented in several potent tubulin polymerization inhibitors.² In connection with our ongoing studies³ on the synthesis of new vascular disrupting agents,⁴ we were especially interested in the construction of polysubstituted indoles bearing a 2-aroyl or 2-heteroaroyl group.

Relatively few methods for the synthesis of the 2-aroylindole skeleton have been reported. The most common synthetic route involves regioselective addition of a variety of acyl electrophiles on an N-protected 2-lithioindole species. Other synthetic pathways include (a) cyclization of chalcones bearing a 2-nitrogen group, (b) palladium-catalyzed coupling reactions with an acid chloride, and (c) palladium carbonylative cross-coupling with indoylborate. Moreover, these methodologies require the "de novo" construction of conveniently N-protected indoles or highly functionalized precursors.

In this context, we became interested in the development of a reliable approach for the synthesis of polysubstituted 2-aroylindoles. The palladium-catalyzed domino reaction appears as an attractive synthetic route that prevents the tedious construction of elaborated precursors and enhances

^{(1) (}a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. *Chem. Rev.* **2003**, *103*, 893. (b) Higuchi, K.; Kawasaki, T. *Nat. Prod. Rep.* **2007**, *24*, 843. (c) Humphrey, G. R.; Kuethe, J. T. *Chem. Rev* **2006**, *106*, 2875.

^{(2) (}a) Romagnoli, R.; Baraldi, P. G.; Sarkar, T.; Carrion, M. D.; Cara, C. L.; Cruz-Lopez, O.; Preti, D.; Tabrizi, M. A.; Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Zonta, N.; Balzarini, J.; Brancale, A.; Hsieh, H.-P.; Hamel, E. J. Med. Chem. 2008, 51, 1464. (b) Mahboobi, S.; Pongratz, H.; Hufsky, H.; Hockemeyer, J.; Frieser, M.; Lyssenko, A.; Paper, D. H.; Burgermeister, J.; Bohmer, F.-D.; Fiebig, H.-H.; Burger, A. M.; Baasner, S.; Beckers, T. J. Med. Chem. 2001, 44, 4535.

^{(3) (}a) Arthuis, M.; Pontikis, R.; Florent, J. C. *Tetrahedron Lett.* **2007**, 48, 6397. (b) Arthuis, M.; Pontikis, R.; Florent, J.-C. *J. Org. Chem.* **2009**, 74, 2234. (c) Ty, N.; Kaffy, J.; Arrault, A.; Thoret, S.; Pontikis, R.; Dubois, J.; Morin-Allory, L.; Florent, J.-C. *Bioorg. Med. Chem. Lett.* **2009**, 19, 1405. (4) (a) Lippert, J. W., III *Bioorg. Med. Chem.* **2007**, 15, 605. (b) Hinnen, P.; Esken, F. *Br. J. Cancer* **2007**, 96, 1159.

⁽⁵⁾ For some examples, see: (a) Shirley, D. A.; Roussel, P. A. *J. Am. Chem. Soc.* **1953**, *75*, 375. (b) Sundberg, R. J.; Russel, H. F. *J. Org. Chem.* **1973**, *38*, 3324. (c) Saulnier, M.; Gribble, G. *J. Org. Chem.* **1982**, *47*, 757. (d) Gharpure, M.; Stoller, A.; Bellamy, F.; Firnau, G.; Snieckus, V. *Synthesis* **1991**, 1079, and references cited therein.

^{(6) (}a) Mali, R.; Tllve, S.; Desai, V. *J. Chem. Res., Miniprint* **1999**, 150. (b) Akazome, M.; Kondo, T.; Watanabe, Y. *Chem. Lett.* **1992**, 21, 760

^{(7) (}a) Labadie, S. S.; Teng, E. J. Org. Chem. **1994**, 59, 4250. (b) Abbiati, G.; Casoni, A.; Canevari, V.; Nava, D.; Rossi, E. Org. Lett. **2006**, 8, 4839.

⁽⁸⁾ Ishikura, M.; Terashima, M. J. Org. Chem. 1994, 59, 2634.

the efficiency of reaching the target molecules. Recently, some interesting syntheses of 2-substituted indoles via palladium-catalyzed tandem reactions, starting from 2-gem-dibromovinylanilines, have emerged in the literature. Lautens and co-workers reported several C,N/C,C sequences providing 2-aryl, 10 2-heteroaryl, 11 2-alkenyl, 12 or 2-alkynyl 13 indoles. Interestingly, a tandem C,N/carbonylation reaction published by Alper and co-workers allowed access to various methyl-2-indolecarboxylates. Accordingly, we envisioned that 2-bromoindole—reported as a potential intermediate in these tandem reactions—could generate, by the migratory insertion of carbon monoxide, an acylpalladium species which could undergo transmetalation with a boronic acid. 15,16

Herein, we report an effective domino C,N-coupling/carbonylation/C,C-coupling sequence as a new route to 2-aroyl-/heteroaroylindoles bearing a variety of functional groups. The reaction involves 2-*gem*-dibromovinylanilines,¹⁷ carbon monoxide, and boronic acids using palladium catalysis (Scheme 1).

Scheme 1. Strategic Approach to the Synthesis of 2-Acylindoles

$$\mathsf{R}^1 \xrightarrow[l]{\mathsf{II}} \mathsf{N} \xrightarrow[l]{\mathsf{N}} \mathsf{R}^2 \Longrightarrow \mathsf{R}^1 \xrightarrow[l]{\mathsf{II}} \mathsf{N} \mathsf{H}_2 \mathsf{B}^\mathsf{r} + \mathsf{CO} + \mathsf{R}^2 \mathsf{-B}(\mathsf{OH})_2$$

The 2-gem-dibromovinylaniline **1a** and phenylboronic acid **3a** were chosen to investigate the feasibility of the projected reaction (Table 1). Thus, using Pd(PPh₃)₄, K₃PO₄ as a base, and toluene as the solvent under 1 atm of CO at 90 °C until consumption of the starting aniline, the desired aroylindole **2a**^{5b} could be isolated in 29% yield, but along with the 2-phenylindole **4** (15% yield) arising from a C,N/Suzuki reaction (entry 1). Several bases were next examined, and

- (10) Fang, Y.-Q.; Lautens, M. J. Org. Chem. 2008, 73, 538.
- (11) Fang, Y.-Q.; Karish, R.; Lautens, M. J. Org. Chem. 2007, 72, 1341.
- (12) Fayol, A.; Fang, Y.-Q.; Lautens, M. Org. Lett. 2006, 8, 4203.
- (13) Nagamochi, M.; Fang, Y.-Q.; Lautens, M. Org. Lett. 2007, 9, 2955.
 (14) Viera, T. O.; Meaney, L. A.; Shi, Y.-L.; Alper, H. Org. Lett. 2008, 10, 4899.

S. F. Org. Lett. **2008**, 10, 5301. (d) Brennführer, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. **2009**, 48, 4114.

(16) For recent examples of carbonylation used in combination with alternative palladium-catalyzed reactions, see: (a) Awuah, E.; Capretta, A. Org. Lett. 2009, 11, 3210. (b) Tadd, A. C.; Matsuno, A.; Fielding, M. R.; Willis, M. C. Org. Lett. 2009, 11, 583. (c) Chouhan, G.; Alper, H. Org. Lett. 2008, 10, 4987. (d) Martinelli, J. R.; Watson, D. A.; Freckmann, D. M. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7102, and references cited therein. (e) Worlikar, S. A.; Larock, R. C. J. Org. Chem. 2008, 73, 7175. (f) Grigg, R.; Sridharan, V.; Saha, M.; Mutton, S.; Kilner, C.; Macpherson, D.; Milner, P. J. Org. Chem. 2008, 73, 8352.

(17) For a recent review on the site-selective cross-coupling of dihalogenated compounds, see: Wang, J. R.; Manabe, K. Synthesis 2009, 1405.

Table 1. Optimization of the Reaction Conditions^a

$$\begin{array}{c|c}
& Br \\
& Conditions \\
& Ph-B(OH)_2
\end{array}$$

$$\begin{array}{c|c}
& Ph-B(OH)_2
\end{array}$$

$$\begin{array}{c|c}
& 2a
\end{array}$$

entry	solvent	base^a	СО	catalyst	temp (°C)/time (h)	yield 2a/4 (%) ^b
1	toluene	K_3PO_4	balloon	Pd(PPh ₃) ₄	90/6	29/15
2	toluene	K_2CO_3	balloon	Pd(PPh ₃) ₄	90/24	45/7
3	toluene	Cs_2CO_3	balloon	Pd(PPh ₃) ₄	90/24	25/2
4	toluene	CsF	balloon	Pd(PPh ₃) ₄	90/48	trace
5	toluene	K_2CO_3	balloon	$Pd(PPh_3)_4^c$	90/2	45/25
6	toluene	K_2CO_3	balloon	PdCl ₂ dppf ^c	90/18	28/8
7	toluene	K_2CO_3	balloon	Pd ₂ dba ₃ /	90/18	12/6
				$Xantphos^c$		
8	toluene	K_2CO_3	12 bar	$Pd(PPh_3)_4$	110/16	44/0
9	dioxane	K_2CO_3	12 bar	$Pd(PPh_3)_4$	100/16	61/0
10	dioxane	K_2CO_3	12 bar	Pd(PPh ₃) ₄	85/24	54/0
11	dioxane	K_2CO_3	12 bar	Pd(PPh ₃) ₄	85/48	62/0
12	dioxane	K_2CO_3	12 bar	Pd(PPh ₃) ₄	85/60	70/0

 $[^]a$ All reactions were performed on a 1 mmol scale using 5 mol % of catalyst, 5 equiv of base, and 1.1 equiv of phenylboronic acid. b Isolated yield after column chromatography. c 3 equiv of KI was added.

 K_2CO_3 proved to be the most efficient (entries 2-45% yield-vs 1, 3, and 4).

Other catalyst systems did not favor the expected three-step tandem process (entries 5–7). To promote the carbonylation step, the domino reaction was performed under 12 bar of CO (entries 8–12). Using this relatively low pressure, the sequence provided exclusively 2-benzoylindole **2a** (entry 8, 44% yield). Exchanging toluene to dioxane at 100 °C resulted in a higher yield of **2a** (entry 9, 61%), but a longer heating time did not improve the coupling efficiency (data not shown). Reducing the temperature to 85 °C resulted in a slight diminution of the yield (entry 10, 54%), while heating for a longer time (48 or 60 h) allowed recovery of up to 70% yield for product **2a** (entries 11 and 12). Modification of the catalytic system also failed to improve the yield (data not shown).

To examine the scope of this one-pot protocol, we selected the optimized reaction conditions (K₂CO₃, Pd(PPh₃)₄, CO 12 bar, dioxane) and chose the temperature/time parameters with respect to the nature of the engaged substrates.

For substituted anilines 1b-1g, which are prone to degradation, domino reactions were conducted at 85 °C for 24 h. As highlighted in Table 2, several functional groups are tolerated including chlorine (entry 1, 68%), the electron-withdrawing methoxycarbonyl group (entry 2, 50%), or electron-releasing groups (entries 4–6) to produce benzoylindoles $2b-2f^{2b,6a}$ in good yields. The reaction can also be conducted with the polysubstituted aniline 1g to provide 2-benzoyl-4,5,6-trimethoxindole 2g in

Org. Lett., Vol. 11, No. 20, 2009

⁽⁹⁾ Thiegles, S.; Meddah, E.; Bisseret, P.; Eustache, J. Tetrahedron Lett. 2004, 45, 907.

⁽¹⁵⁾ Carbonylative cross-coupling reactions had proved to be an efficient tool for the preparation of unsymmetrical ketones. See: (a) Brunet, J.-J.; Chauvin, R. Chem. Soc. Rev 1995, 24, 89. (b) Neigishi, E.-i. Handbook of Organopalladium Chemistry for Organic Synthesis; Ed.; Wiley-Interscience: New York, 2002; Part IV, p 2309. (c) O'Keefe, B. M.; Simmons, N.; Martin,

⁽¹⁸⁾ Augustine, R. L.; Gustavsen, A. J.; Wanat, S. F.; Pattison, I. C.; Houghton, K. S.; Koletar, G. J. Org. Chem. 1973, 38, 3004.

⁽¹⁹⁾ KI and dppf complex were reported to enhance the carbon monoxide insertion vs the transmetalation of boronic acids, see: Ishiyama, T.; Kizaki, H.; Hayashi, T.; Suzuki, A.; Miyaura, N. *J. Org. Chem.* **1998**, *63*, 4726.

⁽²⁰⁾ gem-Dibromovinylanilines **1b-1g** were prepared in a two-step sequence (Ramirez olefination, reduction using SnCl₂·2H₂O) from onitrobenzaldehyde derivatives according to Fang and Lautens (see ref 10).

Table 2. Variation of the 2-gem-Dibromovinylanilines^a

entry	substrate (R^1)	product	yield (%) ^b
1	3-Cl 1b	CI N N 2b	68
2	4-CO ₂ Me	MeO ₂ C N O 2c	50
3	4,5-OCH ₂ O- 1 d	$\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \\ \end{array} \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \\ \end{array} \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \\ \end{array} \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \\ \end{array} \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \\ \end{array} \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \\ \end{array} \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle \left\langle \begin{array}{c} \\ \\ \\ \end{array} \left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle \left\langle \left\langle \left\langle \right\rangle \right\rangle \left\langle \left\langle \left\langle$	56
4	4,5-diOMe 1e	MeO NeO 2e	55
5	4-OBn 1f	BnO O 2f	73
6	3,4,5-triOMe 1g	MeO Neo 2g	65 (51) ^c

 a All reactions were performed on a 1 mmol scale using 5 mol % of Pd(PPh₃)₄, 5 equiv of K₂CO₃, and 1.1 equiv of phenyl boronic acid under an atmosphere of CO (12 bar). b Isolated yield after column chromatography. c Reaction run at 100 °C for 16 h.

good yield (entry 6, 65%). It is noteworthy that yields could be further enhanced by increasing the reaction time. We then turned our attention to the scope of aryl boronic acids. Since the starting aniline **1a** was robust enough, these reactions were conducted at higher temperature (100 °C) for 16 h using several commercially available boronic acids **3h–3o** (Table 3).

Electron-rich partners, such as 4-methoxyphenyl or 3,4,5-trimethoxyphenyl boronic acids, performed well under the optimized conditions (entries 1 and 2). The reaction seems to be sensitive to steric hindrance imposed by the *o*-substitution of the boronic acid. For example, 2-methoxyphenylboronic acid **3j** furnished the aroylindole **2j**²¹ in modest yield (entry 3, 40%), whereas with the 2,6-dimethylphenylboronic acid, an attempt to isolated indole **2k** was unsuccessful despite complete consumption of aniline **1a** (entry 4). Electron-deficient substrates, such as 4-trifluoromethyl or 4-chlorophenylboronic acids, react smoothly (entries 5–6, 73 and 70%, respectively). Boronic acid **3n**, bearing an amido group, participates in the reaction albeit

Table 3. Scope of Aryl Boronic Acids^a

entry	substrate (R^2)	product	yield (%) ^b
1	4-OMe 3h	OMe 2h	61
2	3,4,5- triOMe 3i	OMe 2i	63
3	2-OMe 3 j	$\bigcap_{\mathbb{N}} \bigcap_{\mathbb{N}} \bigcap$	40
4	2,6-diMe 3k	Me Me	-
5	4-CF ₃ 31	CF ₃ 21	73
6	4-Cl 3m	NH CI 2m	70
7	4-CONHMe 3n	CONHMe 2n	29
8	Styryl 30		67

 $^{\it a}$ All reactions were performed on a 1 mmol scale using 5 mol % of Pd(PPh₃)₄, 5 equiv of K₂CO₃, and 1.1 equiv of boronic acid under an atmosphere of CO (12 bar). $^{\it b}$ Isolated yield after column chromatography.

in a lower yield (entry 7, 29%). Phenylvinylboronic acid also proved to be an efficient partner of the domino reaction providing indol-2-ylchalcone **20** in good yield (entry 8, 67%).

Finally, we explored the application of the domino reaction to heteroarylboronic acids (Table 4). The reaction proved to be compatible with various substrates such as thiophen-3-, benzofuran-2-, or dibenzofuran-4-boronic acids providing 2-heteroaroylindoles $2\mathbf{p}-2\mathbf{s}^{2b,23}$ in fair to good yields (entries 1–3, 58–71%). Reaction with isoquinolin-3-boronic acid was less efficient providing indole $2\mathbf{s}$ in low yield, probably due to the nitrogen of the boronic acid (entry 4, 21%).

⁽²¹⁾ Katritzky, A. R.; Akutagawa, K. Tetrahedron Lett. 1985, 26, 5935.

⁽²²⁾ Takeda, Y.; Kikuchi, A.; Terashima, M. Heterocycles 1993, 35, 573.

Table 4. Scope of Heteroaryl Boronic Acids^a

entry	HetAr	product	yield ^b (%)
1	thiophen-3-yl 3p	ON SERVICE SER	67
2	benzo furan-2-yl 3q	NH CO	58
3	dibenzo furan-4-yl 3 r		71
4	isoquinolin-3-yl 3 s		21
5	naphtalen-2-yl 3t		70

 $[^]a$ All reactions were performed on a 1 mmol scale using 5 mol % of Pd(PPh₃)₄, 5 equiv of K₂CO₃, and 1.1 equiv of boronic acid under an atmosphere of CO (12 bar). b Isolated yield after column chromatography.

2-Naphthylboronic acid also participated in the domino process leading to polycyclic compound $2t^{24}$ in good yield (entry 5, 70%).

In summary, we have established a novel and efficient protocol for the preparation of 2-aroylindoles in moderate to good yields, through a one-pot palladium-catalyzed C,N-coupling/carbonylation/Suzuki coupling sequence. The reaction tolerates various functional groups, thus providing a practical access to a wide range of 2-aroylor 2-heteroaroylindoles from readily accessible starting materials. The application of this methodology to the synthesis of bioactive compounds is underway in our laboratory.

Acknowledgment. This work was financially supported by the Centre National de la Recherche Scientifique, the Institut Curie, and INCa. M.A. thanks the Ministère de l'Enseignement Supérieur et de la Recherche for a Ph.D. Fellowship Grant.

Supporting Information Available: Synthetic procedures, characterization data, and copies of the ¹H NMR and ¹³C NMR experiments. This material is available free of charge via the Internet at http://pubs.acs.org.

OL901875Z

Org. Lett., Vol. 11, No. 20, 2009

⁽²³⁾ Mahboobi, S.; Uecker, A.; Cenac, C.; Sellmer, A.; Eichhorn, E.; Elz, S.; Böhmer, F.-D.; Dove, S. *Bioorg. Med. Chem.* **2007**, *15*, 2187.

⁽²⁴⁾ Kar, S.; Lahiri, S. J. Indian. Chem. Soc. 1999, 76, 607.